
Big Matters with Small Numbers:
Rare Events

Richard Charnigo

University of Kentucky

www.richardcharnigo.net/RE/index.html

1



Motivating Example

Columns A to E of {DownsSyndromeData.xls}

contain information on birth year, maternal

age, maternal education, and the presence or

absence of Down’s Syndrome for 54512 live

births in one state from the years 1998 to

2002.

This information was acquired from the

National Center for Health Statistics (NCHS)

Perinatal Mortality Data Files.
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Motivating Example

Over the five-year span there were 59

documented cases of Down’s Syndrome among

the 54512 live births, 37 among the 17799

live births to mothers aged 30 or older and 22

among the 36713 live births to mothers aged

less than 30.

In the year 1998 there were 7 documented

cases of Down’s Syndrome among the 10782

live births, 4 among the 3499 live births to

mothers aged 30 or older and 3 among the

7283 live births to mothers aged less than 30.
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Motivating Example

Looking more closely at the 1998 data, the

rate of Down’s Syndrome was 11.4 per 10000

live births to mothers aged 30 or older and 4.1

per 10000 live births to mothers aged less than

30.

Two questions arise:

• What is the uncertainty associated with these

rates?

• Are these rates significantly different?
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Motivating Example

Putting aside the possibility that Down’s

Syndrome may have been underreported, we

have to consider how to define uncertainty.

After all, the 1998 data are what they are.

One way to define uncertainty is through the

following thought experiment. Suppose —

contrary to fact — that one more woman aged

30 or older had given birth in 1998. Let p1

denote the risk of a Down’s Syndrome case

for that birth.

Likewise, suppose that one more woman aged

less than 30 had given birth in 1998. Let p2

denote the risk of a Down’s Syndrome case for

that birth.
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Motivating Example

We can regard the rates 11.4 (per 10000) and

4.1 as point estimates — single-number “best

guesses” — for p1 and p2. The uncertainty

associated with the 11.4 and 4.1 can then be

described in terms of confidence intervals for

p1 and p2.

In a similar vein, assessing whether the 11.4

and 4.1 are significantly different can

entail a test of the null hypothesis that p1 = p2.
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A Failure of Normal-Theory Methods

To construct a 95% confidence interval for p1

or p2, we would like to use the familiar and

simple normal-theory formula

p̂1 ± 1.96
√

p̂1(1 − p̂1)/n1

or

p̂2 ± 1.96
√

p̂2(1 − p̂2)/n2,

where p̂1 or p̂2 is the point estimate (expressed

as a number between 0 and 1, not 0 and 10000)

and n1 or n2 is the number of live births.

I have automated this calculation on sheet

{Poisson1Risk} of {DownsSyndromeData.xls}.

Simply fill in cells G35 through G37. The lower

and upper confidence limits then appear in cells

J39 and N39.
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A Failure of Normal-Theory Methods

We find that the 95% confidence interval for

p1 is 0.2 (per 10000) to 22.6, while that for p2

is −0.5 to 8.8.

The second confidence interval looks wrong,

but there is no arithmetic error.

So what is the problem?
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A Failure of Normal-Theory Methods

The normal-theory formula assumes that, among

n2 live births with risk of Down’s Syndrome

p2 for each live birth, the number of Down’s

Syndrome cases has an approximately normal

distribution.

A mathematical result called the Central Limit

Theorem ensures that this is so, but only if

n2p2(1 − p2) is at least 10 — and preferably

even larger than that.

We don’t know p2, but we have an estimate

available in p̂2. So,

n2p2(1 − p2) ≈ 7283
3

7283

(
1 −

3

7283

)
≈ 3.
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A Failure of Normal-Theory Methods

That we come up with 3 — the observed

number of Down’s Syndrome cases among live

births to mothers aged less than 30 — is no

coincidence.

Thus, our operating principle is that the normal-

theory formula is only valid if there are at least

10 cases of Down’s Syndrome (or whatever

the event of interest is) in the stratum under

examination.

Likewise, the familiar Z test for assessing the

null hypothesis that p1 = p2 is not valid when

there are fewer than 10 cases in either stratum.
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Poisson Approach to Inference for a
Risk

Before we try to perform a hypothesis test

involving p1 and p2, let us consider performing

a hypothesis test just for p2. Specifically, let

us test the null hypothesis that p2 is 10.0 (per

10000).

If the null hypothesis were true, then the

expected number of Down’s Syndrome cases

among the 7283 live births to mothers aged

less than 30 would have been

7283
10.0

10000
= 7.283

.
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Poisson Approach to Inference for a
Risk

Let us assume that, among n2 live births with

risk of Down’s Syndrome p2 for each live birth,

the number of Down’s Syndrome cases has

a Poisson distribution. If the null hypothesis

were true, then this Poisson distribution would

have mean 7.283.

The assumption of a Poisson distribution is

imperfect but decidedly better than the

assumption of a normal distribution:

quantities that are Poisson-distributed are

nonnegative integers, while quantities that are

normally distributed need not be nonnegative

or integers.
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Poisson Approach to Inference for a
Risk

Testing the null hypothesis that p2 is 10.0 (per

10000) then amounts to answering, “How

improbable is observing 3 cases when the

expected number of cases is 7.283?”

We can answer this question by filling in cells

G43 through G45 on sheet {Poisson1Risk}

of {DownsSyndromeData.xls} and then

examining the contents of cells I148 and J148.
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Poisson Approach to Inference for a
Risk

Cell I148 informs us that the probability of

observing 3 or fewer cases is 0.068 when the

expected number of cases is 7.283, while cell

J148 reveals that the probability of observing

3 or more cases is 0.976. [Mathematical

formulas for these probabilities appear in the

Ancillary Notes following this presentation.]

For a two-sided alternative hypothesis, we

double the smaller of these numbers — and

then round down to 1 if necessary — to

obtain a p-value. Here the p-value is 0.136

and we do not reject the null hypothesis that

p2 is 10.0 (per 10000).
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Poisson Approach to Inference for a
Risk

Exercise: Do we accept or reject the null

hypothesis that p2 is 12.5 (per 10000)? What

is the p-value?

Exercise: Do we accept or reject the null

hypothesis that p1 is 12.5 (per 10000)? What

is the p-value?
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Poisson Approach to Inference for a
Risk

Once we know how to test a null hypothesis

involving p2, we can construct a confidence

interval for p2 by the inversion principle: any

null hypothesis that is accepted at level α is

included in the 100(1 − α)% confidence

interval, while any null hypothesis that is

rejected is not included.

By examining the contents of Column K, we

find that a 95% confidence interval for p2 is

0.9 (per 10000) to 12.0.
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Poisson Approach to Inference for a
Risk

Exercise: What is a 90% confidence interval

for p2?

Exercise: What is a 95% confidence interval

for p1?
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Binomial Approach to Inference for
Two Risks

So far we have described how to test a null

hypothesis involving p1 or p2 as well as how to

construct a confidence interval for p1 or p2.

What if we want to test a null hypothesis

involving both p1 and p2, for instance that

p1 = p2?
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Binomial Approach to Inference for
Two Risks

Fisher’s Exact Test is a well-known technique

for assessing the null hypothesis that p1 = p2

when there are very few cases in one or both

strata. [A reference for Fisher’s Exact Test

appears in the Ancillary Notes.]

However, I would like to present an approach

that accommodates a greater variety of null

hypotheses.
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Binomial Approach to Inference for
Two Risks

We define the relative risk of Down’s Syndrome

(or whatever the event of interest is) as p1/p2

and symbolize it by RR.

The null hypothesis that p1 = p2 can be

expressed as RR = 1.

One way to test this null hypothesis is to ask,

“How many out of 7 Down’s Syndrome cases

would be expected to occur to mothers aged

30 or older given that there were 3499 live

births to these mothers and 7283 live births to

mothers aged less than 30?”
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Binomial Approach to Inference for
Two Risks

If the null hypothesis were true, the expected

number of Down’s Syndrome cases occurring

to mothers aged 30 or older would have been

7

(
3499

3499 + 7283

)
= 2.272,

since the expected fraction of Down’s

Syndrome cases occurring to such mothers

would equal the fraction of such mothers,

namely
(

3499
3499+7283

)
.

Now we need to answer the question, “How

improbable is observing 4 out of 7 cases

occurring to mothers aged 30 or older when

the expected number for such mothers is 2.272?”
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Binomial Approach to Inference for
Two Risks

We can answer this question by filling in cells

G41 through G43 and cells M42, M43 on sheet

{Binomial2Risks} of {DownsSyndromeData.xls}

and then examining the contents of cells I1046

and J1046.

Cell I1046 says that 0.960 is the probability

that a binomial random variable with

parameters 7 and
(

3499
3499+7283

)
= 0.325 is

less than or equal to 4. Cell J1046 says that

0.160 is the probability that such a binomial

random variable is greater than or equal

to 4. [Mathematical formulas for these

probabilities appear in the Ancillary Notes.]
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Binomial Approach to Inference for
Two Risks

For a two-sided alternative hypothesis, we

double the smaller of these numbers — and

then round down to 1 if necessary — to

obtain a p-value. Here the p-value is 0.320

and we do not reject the null hypothesis that

RR = 1.

We can employ the same strategy to test the

null hypothesis that RR = 2.00, except that

the second parameter of the binomial random

variable would now be
(

2.00×3499
2.00×3499+7283

)
= 0.490,

since 3499 live births with doubled risk would

yield the same expected number of cases as

2.00 × 3499 live births without doubled risk.
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Binomial Approach to Inference for
Two Risks

Exercise: Do we accept or reject the null

hypothesis that RR = 2.00? What is the

p-value?

Exercise: Do we accept or reject the null

hypothesis that RR = 20.00? What is the

p-value?
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Binomial Approach to Inference for
Two Risks

Once we know how to test a null hypothesis

involving RR, we can construct a confidence

interval for RR by the inversion principle: any

null hypothesis that is accepted at level α is

included in the 100(1 − α)% confidence

interval, while any null hypothesis that is

rejected is not included.

By examining the contents of Column K, we

find that a 95% confidence interval for RR is

0.470 to 18.94.
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Binomial Approach to Inference for
Two Risks

Exercise: What is a 90% confidence interval

for RR?

Exercise: What is a 90% confidence interval

for RR if we shift the cut point from 30 to 35

years of age?
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Aggregation Approach to Inference

Another strategy that can be used in lieu of —

or perhaps in addition to — the Poisson and

Binomial approaches previously described is to

aggregate or pool data from multiple years (or

from multiple geographic regions).

Implicit in this strategy is the belief that p1

and p2 are essentially constant across the

multiple years (or multiple geographic regions)

over which data are aggregated.
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Aggregation Approach to Inference

Let us return to sheet {Poisson1Risk} of

{DownsSyndromeData.xls} and calculate a 95%

confidence interval for p1 using the data from

1998 through 2002.

Since there are 37 cases among 17799 live

births to mothers aged 30 or older, we can

employ the normal-theory formula for a 95%

confidence interval to find lower and upper

confidence limits of 14.1 (per 10000) and 27.5

respectively.

The Poisson approach yields a 95% confidence

interval of 14.7 to 28.6.
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Aggregation Approach to Inference

Exercise: What is a 95% confidence interval

for p2 using the data from 1998 through 2002,

via the normal-theory formula?

Exercise: What is a 95% confidence interval

for p2 using the data from 1998 through 2002,

via the Poisson approach?
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Aggregation Approach to Inference

Let us continue to sheet {Binomial2Risks} and

calculate a 95% confidence interval for RR

using the data from 1998 through 2002.

The binomial approach previously described yields

a 95% confidence interval of 2.00 to 6.17.

A normal-theory formula,

p̂1

p̂2
exp



±1.96

√√√√
(
1 − p̂1

p̂1n1

)

+

(
1 − p̂2

p̂2n2

)

 ,

can also be employed since there are

sufficiently many cases in both strata. We

obtain 2.047 to 5.878.
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Aggregation Approach to Inference

Exercise: What is a 95% confidence interval

for RR based on the data from 1998 through

2002 with the binomial approach, if we shift

the cut point from 30 to 35 years of age?

Exercise: What if we use the normal-theory

formula?

31



Advantages and Disadvantages of
Probability Models

The main advantages of the Poisson and

binomial approaches are as follows.

One case in each stratum is sufficient for the

validity of all computations described herein,

to the extent that we trust the underlying data

and are willing to adopt Poisson and binomial

probability models for the numbers of cases in

a stratum.

Although the Poisson and binomial probability

models may be imperfect, they are not

“obviously wrong” just because the numbers

of cases are small; the same cannot be said of

the normal-theory formulas.
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Advantages and Disadvantages of
Probability Models

Moreover, the Poisson and binomial approaches

can be used even when the numbers of cases

are not small.

Because one case in each stratum is sufficient,

the Poisson and binomial approaches do

not require us to assume that p1 and p2 are

constant over time (or space).

Thus, the Poisson and binomial approaches are

useful when we suspect that p1 and p2 may be

changing over time (or space).
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Advantages and Disadvantages of
Probability Models

The main disadvantages of the Poisson and

binomial approaches are as follows.

Since the numbers of cases may be very small,

the point estimates may be wildly unstable from

year to year (or region to region).

Although confidence intervals may help us to

recognize that some instability in the point

estimates is meaningless epidemiologically,

they may be so wide as to be noninformative.

Likewise, there may be little power for

rejecting false null hypotheses.
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Advantages and Disadvantages of
Aggregation

The main advantages of aggregation follow.

The numbers of cases can often be increased

such that the normal-theory formulas may be

employed.

Even if one chooses to use Poisson and

binomial approaches in conjunction with

aggregation, there may be less concern with

the point estimates being misleading

epidemiologically.
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Advantages and Disadvantages of
Aggregation

With greater numbers of cases, confidence

intervals may be narrowed so that they are

informative. Likewise, there may be good

power for rejecting false null hypotheses.

Aggregation need not be an all-or-nothing

proposition. If one is not comfortable

aggregating data over 5 years, one can choose

to aggregate data over 3 or even just 2 years.
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Advantages and Disadvantages of
Aggregation

The main disadvantages of aggregation follow.

The greater the length of time (or region of

space) over which one aggregates, the more

implausible is the assumption that p1 and p2

are constant.

If one’s goal is to examine changes over time

(or space), aggregation may be antithetical to

that goal.
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Confidentiality Issues

Some data sets with rare events may, despite

not containing traditional identifiers such as

names or social security numbers, allow

for some individuals to be identified by their

neighbors or colleagues based on the

combination of a rare event and an unusual

mix of demographic characteristics.

This can happen if, for example, there is only

one event in a small region occurring to an

individual of a minority race in a narrow age

stratum.
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Confidentiality Issues

The neighbor of such an individual may look

at the data set and say, “I know a person of

this race and in this age stratum living in this

region to whom the event has occurred. So

this record in the data set must belong to that

person.”

Here the problem is not that the event has

been revealed — the neighbor already knew

of it — but that the neighbor may now be

able to look up other characteristics of the

person to whom the event occurred, such as

that person’s income.

39



Confidentiality Issues

Because of concerns over confidentiality issues,

data sets with rare events may be summarized

rather than presented in their entireties.

For instance, records for individuals may not

be made available, but numbers of events in

each of various strata may be furnished along

with their respective denominators.

When the denominators themselves are very

small, even reporting the numbers of events

can be revelatory. In this scenario, the

numbers of events — not just records for

individuals — may be suppressed as well.
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What now?

You’re invited to visit the website

{www.richardcharnigo.net/RE/index.html},

which contains this presentation and three

Excel files with real data. Due to time

constraints, we examined only one of those

Excel files during this presentation.

You’re also invited to review whatever parts

of the Ancillary Notes may interest you. They

are contained in the same file as this

presentation. The Ancillary Notes describe

the other two Excel files, present some

mathematical details for the Poisson and

binomial distributions, and suggest references

for further reading.

41



Ancillary Notes

Besides {DownsSyndromeData.xls}, you can

find the Excel files {CleftLipPalateData.xls} and

{PostNeonatalData.xls} at

{www.richardcharnigo.net/RE/index.html}.

Both of these Excel files contain information

acquired from the NCHS Perinatal Mortality

Data Files.
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Ancillary Notes

Columns A to J of {CleftLipPalateData.xls}

contain information on birth year, maternal

education, tobacco use, and the presence or

absence of cleft lip or palate for 85802 live

births in two states from the years 1998 to

2002. I used ten columns because an Excel

file is limited to 65536 rows.

Columns A to D of {PostNeonatalData.xls}

contain information on birth year, maternal

race, and infant mortality for 49857 live births

in one state from the years 1997 to 2001. The

variable in Column D is coded “0” for infants

who survived their first year, “1” for infants

who died during their first month, and “2” for

infants who survived their first month but died

during their first year.
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Ancillary Notes

Let µ be a positive number. A random variable

X has a Poisson distribution with mean µ if

P(X = j) = exp[−µ]µj/j!

for any nonnegative integer j.

So, for instance,

P(X = 0) = exp[−µ],

P(X = 1) = exp[−µ]µ,

and

P(X = 2) = exp[−µ]µ2/2.
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Ancillary Notes

Let us assume that, among n2 live births with

risk of Down’s Syndrome p2 for each live birth,

the number of Down’s Syndrome cases has a

Poisson distribution with mean n2p2.

If the null hypothesis p2 = p∗2 is true, then the

expected number of Down’s Syndrome cases

is n2p∗2, which we denote µ∗.
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Ancillary Notes

If we actually observe k Down’s Syndrome cases,

the p-value for the null hypothesis p2 = p∗2 is

given by

min{1,2P(X ≤ k),2P(X ≥ k)},

where the probabilities are calculated under the

supposition that X has a Poisson distribution

with mean µ∗.

Explicitly, we have

P(X ≤ k) =
k∑

j=0

exp[−µ∗](µ∗)j/j!

and

P(X ≥ k) = 1 −
k−1∑

j=0

exp[−µ∗](µ∗)j/j!,

which I have implemented in columns I and J

of sheet {Poisson1Risk}.
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Ancillary Notes

Let m be a positive integer and q a positive

number less than 1. A random variable X has

a binomial distribution with parameters m and

q if

P(X = j) =
m!

j!(m − j)!
qj(1 − q)m−j

for any integer j between 0 and m.

So, for instance,

P(X = 0) = (1 − q)m,

P(X = 1) = mq(1 − q)m−1,

and

P(X = m) = qm.
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Ancillary Notes

Let us assume that, among m Down’s

Syndrome cases occurring within two strata,

the number occurring within the first stratum

has a binomial distribution with parameters m

and q.

In this setting q is given by the formula

q =
n1RR

n1RR + n2
,

where n1 and n2 are the numbers of live births

in the two strata and RR = p1/p2 is the relative

risk of Down’s Syndrome.

If the null hypothesis RR = RR∗ is true, then

q = q∗ =
n1RR∗

n1RR∗ + n2
.
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Ancillary Notes

If we actually observe k Down’s Syndrome cases

in the first stratum, the p-value for the null

hypothesis RR = RR∗ is given by

min{1,2P(X ≤ k),2P(X ≥ k)},

where the probabilities are calculated under the

supposition that X has a binomial distribution

with parameters m and q∗.

Explicitly, we have

P(X ≤ k) =
k∑

j=0

m!

j!(m − j)!
(q∗)j(1 − q∗)m−j

and

P(X ≥ k) = 1−
k−1∑

j=0

m!

j!(m − j)!
(q∗)j(1− q∗)m−j,

which I have implemented in columns I and J

of sheet {Binomial2Risks}.

49



Ancillary Notes

A good general reference for statistical

methods is Fundamentals of Biostatistics, Sixth

Edition, by Bernard Rosner (Duxbury, 2006).

Section 4.10 introduces Poisson distributions.

Equation 14.5 in Section 14.2 presents the

Poisson approach to hypothesis testing for a

risk but casts it in terms of incidence density

for person-time data.

Section 4.8 introduces binomial distributions.

Equation 14.9 in Section 14.3 presents the

binomial approach to hypothesis testing for

equal risks but casts it in terms of incidence

densities for person-time data.
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Ancillary Notes

Equation 6.23 in Section 6.9 and Equation

6.20 in Section 6.8 demonstrate the inversion

principle for the Poisson and binomial approaches

respectively.

Section 10.3 presents Fisher’s Exact Test to

assess a null hypothesis of equal risks.

Equation 6.19 in Section 6.8 and Equation

13.6 in Section 13.3 discuss normal-theory

approaches to confidence intervals for risks and

relative risks.
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Ancillary Notes

Paul A. Beuscher has written a piece called

“Problems with Rates Based on Small

Numbers” for Issue 12 of the Statistical Primer

by the State Center for Health Statistics (April

1997). This piece discusses aggregation and

indicates that normal-theory formulas will not

work when the numbers of cases are too small.

Michael A. Stoto of RAND Health has written

a piece called “Statistical Issues in Interactive

Web-Based Public Health Data Dissemination

Systems” for the National Association of

Public Health Statistics and Information

Systems (September 2002). Pages 27 through

36 deal specifically with confidentiality issues.
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